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1. Introduction 

     ,        , q-prime power 

d(x, y)     Hamming distance 

C :                  code 

d = d(C)    min distance 

 

t(C) =  
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ρ(C) =                     d(x, c)    covering radius 

 

 

ρ(C) = t(C)  Perfect code 

ρ(C) = 1 + t(C) Quasi-perfect code 
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If C is a k-dimensional subspace of     , then  

C : [n, k, d]q code 

For linear codes 

d(C) = {min wt (c)I c    C, c ≠ 0} 

ρ(C)     max weight of a coset leader 
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The parameters of perfect codes 

•                    - the whole space 

•                             - the binary repetition code 

 

•                                   - the Hamming codes 

 

• (23, 212, 7)2 – the binary Golay code 

• (11, 36, 5)3 – the ternary Golay code 
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Classification (up to equivalence) 

• Unique linear Hamming code 

• Golay codes are unique 

• Open: non-linear Hamming codes 

• Hamming bound 

 



8 

All sets of parameters for which  perfect codes 
are known: 

• Van Lint 

• Tietäväinen (1973) 

• Zinoviev, Leontiev (1972-1973) 

Natural question: ? QP codes 
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2. Covering radius of BCH codes 

• Gorenstein, Peterson, Zierler (1960) 

   Primitive binary 2-error correcting BCH codes  
 QP 

• MacWilliams, Sloane (1977): 

   Research problem (9.4). Show that no other 
BCH codes are quasi-perfect 
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• Helleseth (1979): 

   No primitive binary t-error-correcting BCH 
codes are QP when t › 2 
Recall: n = 2m – 1 

• Leontiev (1968): 

   Partial result for  
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Binary 3-error correcting BCH codes of 
length 2m – 1, m ≥ 4 

ρ = 5 

History: 

Van der Horst, Berger (1976) 

•     

•    

 Assmus, Mattson (1976)   

•           

Completed by T. Helleseth (1978):  

m - even, m ≥ 10               
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Long BCH codes 

 

 

              min polynomial of αi, where α is of  

order 2m – 1 
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Helleseth (1985) 

C = (g(x)) 

i)                                                             

ii)       has no multiple zeros, 

iii) D = max 

If                              then  
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Tietäväinen (    1985) 

ρ(C) ≤ 2t for large enough m. 

For t-designed BCH codes of length 

                               

                            

g(x) = mN(x)m3N(x)… m(2t - 1)N(x) 

2t - 1 ≤ ρ ≤ 2t + 1 
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3. Quasi-perfect  codes 

Etzion, Mounits (2005, IT-51) : q = 2 

q = 3 

 

n =                , k = n- 2s, d = 5, ρ = 3 

Gashkov, Sidel’nikov (1986) 
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n =                 , k = n – 2s, d = 5, ρ = 3  

 

if s ≥ 3 - odd 

Danev, Dodunekov (2007) 
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q = 4  

Two families: 

 

n =                , k = n – 2s, d = 5 

 

Gevorkjan et al. (1975) 

 

N =                     , k = n – 2s, d = 5 

 

Dumer, Zinoviev (1978) 
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Both are quasi-perfect, i.e. ρ = 3 

D. (1985-86) 

Open: ? QP codes for q › 4 

In particular, QP codes with d = 5? 
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q = 3,                             

α – primitive n-th root of unity in an extension 
field of     .   

<β> =        α = β2 

The minimal polynomials of α and α-1 : 
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Cs     (g(x)), g(x) = g1(x)g-1(x) 

 

                       , k = n – 2s, s ≥ 3 – odd  

 d = 5 

ρ(Cs) = 3  

Cs  is a BCH code! 

Set γ = α2. Then 

                                         = {α-3, α-1, α, α3,}  
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Hence, infinitely many counterexamples  

to (9.4)! 

C3 : [13, 7,  5] QR code 

Baicheva, D., Kötter (2002) 

Open: i) QP BCH codes for  

•q > 4? 

   ii) QP BCH codes for d ≥ 7? 
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Binary and ternary QP codes with 
small dimensions 

Wagner (1966, 1967) 

Computer search, 27 binary QP codes 

• 19 ≤ n ≤ 55, ρ = 3 

• One example for each parameter set. 



23 

Simonis (2000): the [23, 14, 5] Wagner code 

is unique up to equivalence. 

Recently: 

Baicheva, Bouykliev, D.,  Fack (2007): 

A systematic investigation of the possible  

parameters of QP binary and ternary codes 
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Results 

• Classification up to equivalence of all binary 
and ternary QP codes of dimensions up to 9 
and 6 respectively; 

• Partial classification for dimensions up to 14 
and 13 respectively 
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Important observations 

• For many sets of parameters  more than one 
QP code: 

[19, 10, 5]2  12 codes 

[20, 11, 5]2  564 codes 
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• Except the extended Golay [24, 12, 8]2 code 
and the [8, 1, 8]2 repetition code we found 11 
[24, 12, 7]2  and 2 [25, 12, 8]2  

   QP codes with ρ = 4 

Positive answer to the first open problem of 

Etzion, Mounits (2005). 
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4. Singleton bound, MDS, AMDS, 
NMDS 

Singleton (1964): 

C: [n, k, d]q code  d ≤ n – k + 1 

For nonlinear codes:                                

s = n – k + 1    Singleton defect. 

s = 0  MDS codes 
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An old optimization problem: 

m(k,q)                                         code  

(MDS code) 

Conjecture: 

 

 

except for m(3,q) = m(q – 1, q) = q + 2  

                 for q =power of 2. 

 

max n:  [n, k, n - k 
+1]q 
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s = 1  Almost MDS codes (AMDS) 

Parameters: [n, k, n – k]q  

If C is an AMDS, C┴ is not necessarily AMDS. 

D., Landjev (1993): Near MDS codes. 

 

Simplest definition: d + d┴ = n 
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Some properties: 

1. If n › k + q every [n, k, n – k]q code is NMDS 
code. 

2. For an AMDS code C: [n, k, n – k]q   

with k ≥ 2  

i) n ≤ 2q + k ; 

ii) C is generated by its codewords of weight  

n – k and n – k +1; if n › q + k, C is generated 

 by its minimum weight vectors. 
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3. C: [n, k]q – NMDS code with weight 
distribution {Ai, i = 0, ..., n} then: 

 

 

 

 

4.  
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An optimization problem 

Define  

m'(k, q) = max n  :  a NMDS code with   
parameters  [n, k, n-k]q     

           

What is known? 

1. m'(k, q) ≤ 2q+k. 

     In the case of equality An-k+1 = 0.  

2. m'(k, q) = k + 1 for every k › 2q. 
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3.  integer α, 0 ≤ α ≤ k 

    m'(k, q) ≤ m'(k-α, q) + α  

4. If q › 3, then 

    m'(k, q) ≤ 2q + k – 2 
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5. Tsfasman, Vladut (1991): NMDS AG     

    codes for every 

 

 

 

Conjecture: m'(k, q) ≈ q + 2√q  
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5. Grey – Rankin bound 

 Grey (1956), Rankin(1962)  

C : (n, M, d)2  code, (1, 1,…1)    C. 

C     self-complementary 

 

Then   

 

provided   
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 Constructions of codes meeting the 

Grey-Rankin bound  

Gary Mc Guire (1997) 

 

Suppose                              . Then 

A. i) n-odd;  a self-complementary code 
meeting the Grey-Rankin bound   a 
Hadamard matrix of size n + 1; 
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ii) n-even;  a self-complementary code meeting 
the Grey-Rankin bound   a quasi-
symmetric 2 – (n, d, λ) design with 

  

   block intersection sizes      and                  , 
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Remark 

A code is said to form an orthogonal array of  

strength t 

 

The projection of the code on to any t  

coordinates contains every t-tuple the same  

number of times 
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Equality in                                        holds  

 

The distance between codewords in C are 

all in {0, d, n – d, n} and the codewords form 

an orthogonal array of strength 2. 
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B. In the linear case 

i) n-odd; the parameters of C are  

[2s – 1, s + 1, 2s – 1 – 1], s ≥ 2 

and the corresponding Hadamard matrix is 

 of  Sylvester type. 

ii) n-even; the parameters are  

[22m-1 – 2m – 1, 2m + 1, 22m – 2 – 2m – 1]    C1, or 

[22m-1 + 2m – 1, 2m + 1, 22m – 2]    C2. 
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Remark 

Put C1 and C2 side by side: 

RM(1, 2m) = (C1I C2) 

 

 of nonequivalent codes of both types is equal. 

Remark 

 nonlinear codes meeting  
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Bracken, Mc Guire, Ward (2006) 

u    N, even 

i) Suppose  a 2u x 2u Hadamard matrix and u – 
2 mutually orthogonal 2u x 2u Latin squares. 

   Then there exists a quasi-symmetric  

   2-(2u2 – u, u2 – u, u2 – u – 1) design with  

   block intersection sizes              

                    and  
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ii) Suppose  a 2u x 2u Hadamard matrix and u – 
1 mutually orthogonal Latin squares. 

     Then  a quasi-symmetric  

     2-(2u2 + u, u2, u2 – u) design with block  

     intersection sizes                       

                          

                        and   



44 

The associated codes have parameters 

(n = 2u2 – u, M = 8u2, d = u2 – u) 

(n = 2u2 + u, M = 8u2, d = u2) 

u = 6 

(n = 66, M = 288, d = 30) 

                                    Open ?    30 years 

 

Meeting   
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Nonbinary version of GR-bound 

Fu, KlØve, Shen (1999) 

C: (n, M, d)q - code, for which 

 

1) 
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2)  a, b    C  d (a, b) ≤ 2 dup – d. 

Then 
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 Construction of codes meeting FKS 
bound 

The general concatenation construction 

A:                        code  outer code 

B:                        code  inner code 

 

Assume: qa = Mb 

B = {b(i), i = 0,1…, Mb - 1} 
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The alphabet of A: 

Ea = {0,1,…, qa – 1} 

The construction: 

a    A,                              ,        Ea  

 

 

C = {c(a) : a    A} 

C : (n, M, d)q code with parameters 

n = na nb, M = Ma, d ≥ da db , q = qb 
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D., Helleseth, Zinoviev (2004) 

Take 

 

B :                                                                       

 

q = ph, p – prime 

A : an MDS code with da = na – 1, Ma = q2m 
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Take  
 
The general concatenated construction: 
C : (n, M, d)q with                                                                                                         
 
                                 
 
 
C meets the FKS bound 
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Something more: 

1) in terms of n: 

                                                                                  . 

 

n1, n2 - the roots, n1 ‹ n2 

 

 

 

The construction gives codes satisfying FKS  

bound for  n, n1 ‹ n ≤ nmax  

and with equality for n = nmax 
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n-simplex in the n-dimensional q-ary  

Hamming space 

 

A set of q vectors with Hamming distance n  

between any two distinct vectors. 

 

                                   an upper bound on the 

 

 size of a family of binary n-simplices with 
pairwize distance ≥ d.  
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Sq(n, d)    max # of n-simplices in the q-ary  

Hamming n-space with distance ≥ d.  
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Bassalygo, D., Helleseth, Zinoviev (2006) 

 

 

 

provided that the denominator is positive. 

The codes meeting the bound  

have strength 2. 
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6. Conclusions 

• Optimality with respect to the length, 
distance, dimension is not a necessary 
condition for the existence of a QP code; 

• The classification of all parameters for which  
QP codes would be much more difficult than 
the similar one for perfect codes. 
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Open (and more optimistic): 

• Are there QP codes with ρ ≥ 5? 

• Is there an upper bound on the minimum 
distance of QP codes? 



 

 

 

    T H A N K    Y O U ! 
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